Thursday, March 26, 2009

IPO301T Semester Test I Memorandum

Industrial Processes III

Semester Test 1

Question paper

Date: March 18th 2009

Time: 2 hours

Marks: 90 marks

Initials and surname:

Write on answer sheet

Student number:

Write on answer sheet

 

Topics covered:

Coal
Coke
Petroleum
Natural Gas
 
Special requirements:
Answer sheet, pen, pencil

 

Question 1

What is coal and how was it formed?

(6)

 

Answer 1

Coal is a readily combustible black or brownish-black sedimentary rock. The harder forms, such as anthracite coal, can be regarded as metamorphic rock because of later exposure to elevated temperature and pressure. It is composed primarily of carbon along with variable quantities of other elements, chiefly sulfur, hydrogen, oxygen and nitrogen.

 

Coal was formed from plant remains that were protected by water and mud against oxidization and biodegradation, thus trapping atmospheric carbon in the ground. Over time, the chemical and physical properties of the remains were changed by geological action to create a solid material.

 

Question 2

Name and briefly describe the six common forms of coal. When naming them, keep them in order from the lowest rank to the highest rank.

(13)

 

Answer 2

As geological processes apply pressure to dead biotic matter over time, under suitable conditions it is transformed successively into

 

    * Peat, considered to be a precursor of coal, has industrial importance as a fuel in some regions, for example, Ireland and Finland.

    * Lignite, also referred to as brown coal, is the lowest rank of coal and used almost exclusively as fuel for electric power generation. Jet is a compact form of lignite that is sometimes polished and has been used as an ornamental stone since the Iron Age.

    * Sub-bituminous coal, whose properties range from those of lignite to those of bituminous coal and are used primarily as fuel for steam-electric power generation. Additionally, it is an important source of light aromatic hydrocarbons for the chemical synthesis industry.

    * Bituminous coal, dense mineral, black but sometimes dark brown, often with well-defined bands of bright and dull material, used primarily as fuel in steam-electric power generation, with substantial quantities also used for heat and power applications in manufacturing and to make coke.

    * Anthracite, the highest rank; a harder, glossy, black coal used primarily for residential and commercial space heating. It may be divided further into metamorphically altered bituminous coal and petrified oil, as from the deposits in Pennsylvania.

    * Graphite, technically the highest rank, but difficult to ignite and is not so commonly used as fuel: it is mostly used in pencils and, when powdered, as a lubricant.

 

 

 

Question 3

What is metallurgical coke and how is it made?

(3)

 

Answer 3

Coke is a solid carbonaceous residue derived from low-ash, low-sulfur bituminous coal from which the volatile constituents are driven off by baking in an oven without oxygen at temperatures as high as 1,000 °C (1,832 °F) so that the fixed carbon and residual ash are fused together. Metallurgical coke is used as a fuel and as a reducing agent in smelting iron ore in a blast furnace. The product is too rich in dissolved carbon, and must be treated further to make steel. The coke must be strong enough to resist the weight of overburden in the blast furnace, which is why coking coal is so important in making steel by the conventional route. However, the alternative route to is direct reduced iron, where any carbonaceous fuel can be used to make sponge or pelletised iron. Coke from coal is grey, hard, and porous and has a heating value of 24.8 million Btu/ton (29.6 MJ/kg). Some cokemaking processes produce valuable by-products that include coal tar, ammonia, light oils, and "coal gas".

 

Petroleum coke is the solid residue obtained in oil refining, which resembles coke but contains too many impurities to be useful in metallurgical applications.

 

Question 4

What is metallurgical coke used for most often?

(2)

 

Answer 4

It is used for fuel and in the reduction of iron ore to make iron in a blast burnace.

 


Question 5

What is coal gasification?

(3)

 

Answer 5

Coal gasification can be used to produce syngas, a mixture of carbon monoxide (CO) and hydrogen (H2) gas. This syngas can then be converted into transportation fuels like gasoline and diesel through the Fischer-Tropsch process. Currently, this technology is being used by the Sasol chemical company of South Africa to make gasoline from coal and natural gas. Alternatively, the hydrogen obtained from gasification can be used for various purposes such as powering a hydrogen economy, making ammonia, or upgrading fossil fuels.

 

During gasification, the coal is mixed with oxygen and steam (water vapor) while also being heated and pressurized. During the reaction, oxygen and water molecules oxidize the coal into carbon monoxide (CO) while also releasing hydrogen (H2) gas. This process has been conducted in both underground coal mines and in coal refineries.

 

    (Coal) + O2 + H2O H2 + CO

 

If the refiner wants to produce gasoline, the syngas is collected at this state and routed into a Fischer-Tropsch reaction. If hydrogen is the desired end-product, however, the syngas is fed into the water gas shift reaction where more hydrogen is liberated.

 

    CO + H2O CO2 + H2

 

High prices of oil and natural gas are leading to increased interest in "BTU Conversion" technologies such as gasification, methanation and liquefaction. The Synthetic Fuels Corporation was a U.S. government-funded corporation established in 1980 to create a market for alternatives to imported fossil fuels (such as coal gasification). The corporation was discontinued in 1985.

 

In the past, coal was converted to make coal gas, which was piped to customers to burn for illumination, heating, and cooking. At present, the safer natural gas is used instead.

 

Question 6

What takes place during coal Liquefaction (Coal-To-Liquids (CTL))?

(3)

 

Answer 6

Coals can also be converted into liquid fuels like gasoline or diesel by several different processes. In the direct liquefaction processes, the coal is either hydrogenated or carbonized. Alternatively, coal can be converted into a gas first, and then into a liquid, by using the Fischer-Tropsch process.

 

In the Bergius process,[15] coal is liquefied by mixing it with hydrogen gas and heating the system (hydrogenation). This process was used by Germany during World War I and World War II and has been explored by SASOL in South Africa. Several other direct liquefaction processes have been developed, among these being the SRC-I and SRC-II (Solvent Refined Coal) processes developed by Gulf Oil and implemented as pilot plants in the United States in the 1960s and 1970s.[16] The NUS Corporation developed another hydrogenation process which was patented by Wilburn C. Schroeder in 1976. The process involved dried, pulverized coal mixed with roughly 1wt% molybdenum catalysts. Hydrogenation occurred by use of high temperature and pressure synthesis gas produced in a separate gasifier. The process ultimately yielded a synthetic crude product, Naphtha, a limited amount of C3/C4 gas, light-medium weight liquids (C5-C10) suitable for use as fuels, small amounts of NH3 and significant amounts of CO2.[17]

 

The process of low temperature carbonization (LTC) can also convert coal into a liquid fuel. Coal is coked at temperatures between 450 and 700°C compared to 800 to 1000°C for metallurgical coke. These temperatures optimize the production of coal tars richer in lighter hydrocarbons than normal coal tar. The coal tar is then further processed into fuels. The Karrick process was developed by Lewis C. Karrick, an oil shale technologist at the U.S. Bureau of Mines in the 1920s.

 

In the Fischer-Tropsch process, an indirect route, coal is first gasified to make syngas (a balanced purified mixture of CO and H2 gas). Next, Fischer-Tropsch catalysts are used to convert the syngas into light hydrocarbons (like ethane) which are further processed into gasoline and diesel. This method was used on a large technical scale in Germany between 1934 and 1945 and is currently being used by Sasol in South Africa. In addition to creating gasoline, syngas can also be converted into methanol, which can be used as a fuel, or into a fuel additive.

 

All of these liquid fuel production methods release carbon dioxide (CO2) in the conversion process, far more than is released in the extraction and refinement of liquid fuel production from petroleum. If these methods were adopted to replace declining petroleum supplies, carbon dioxide emissions would be greatly increased on a global scale. For future liquefaction projects, Carbon dioxide sequestration is proposed to avoid releasing it into the atmosphere, though no pilot projects have confirmed the feasibility of this approach on a wide scale. As CO2 is one of the process streams, sequestration is easier than from flue gases produced in combustion of coal with air, where CO2 is diluted by nitrogen and other gases. Sequestration will, however, add to the cost.

 

The reaction of coal and water using high temperature heat from a nuclear reactor offers promise of liquid transport fuels that could prove carbon-neutral compared to petroleum use.[citation needed] The development of a reliable nuclear reactor that could provide 900 to 1000 deg C process heat, such as the pebble bed reactor, would be necessary.

 

Question 7

List any six environmental effects of coal.

(6)

 


Answer 7

There are a number of adverse environmental effects of coal mining and burning, specially in power stations.

 

These effects include:

 

    * release of carbon dioxide, a greenhouse gas, which causes climate change and global warming according to the IPCC. Coal is the largest contributor to the human-made increase of CO2 in the air.[21]

    * generation of hundred of millions of tons of waste products, including fly ash, bottom ash, flue gas desulfurization sludge, that contain mercury, uranium, thorium, arsenic, and other heavy metals

    * acid rain from high sulphur coal

    * interference with groundwater and water table levels

    * contamination of land and waterways and destruction of homes from fly ash spills such as Kingston Fossil Plant coal fly ash slurry spill

    * impact of water use on flows of rivers and consequential impact on other land-uses

    * dust nuisance

    * subsidence above tunnels, sometimes damaging infrastructure

    * rendering land unfit for other uses

    * coal-fired power plants without effective fly ash capture are one of the largest sources of human-caused background radiation exposure

    * coal-fired power plants shorten nearly 24,000 lives a year, including 2,800 from lung cancer.[22]

    * coal-fired power plant releases emissions including mercury, selenium, and arsenic which are harmful to human health and the environment.[23]

 

 


Question 8

What is petroleum?

(3)

 

Answer 8

Petroleum or crude oil is a naturally occurring, flammable liquid found in rock formations in the Earth consisting of a complex mixture of hydrocarbons of various molecular weights, plus other organic compounds.

 

 

Question 9

Briefly discuss the chemical composition of petroleum. Include the types of hydrocarbons found in petroleum in your answer as well as any of the other elements and metals.

(6)

 

Answer 9

The proportion of hydrocarbons in the mixture is highly variable and ranges from as much as 97% by weight in the lighter oils to as little as 50% in the heavier oils and bitumens.

 

The hydrocarbons in crude oil are mostly alkanes, cycloalkanes and various aromatic hydrocarbons while the other organic compounds contain nitrogen, oxygen and sulfur, and trace amounts of metals such as iron, nickel, copper and vanadium. The exact molecular composition varies widely from formation to formation but the proportion of chemical elements vary over fairly narrow limits as follows

Petroleum is a mixture of a very large number of different hydrocarbons; the most commonly found molecules are alkanes (linear or branched), cycloalkanes, aromatic hydrocarbons, or more complicated chemicals like asphaltenes. Each petroleum variety has a unique mix of molecules, which define its physical and chemical properties, like color and viscosity.

 

The alkanes, also known as paraffins, are saturated hydrocarbons with straight or branched chains which contain only carbon and hydrogen and have the general formula CnH2n+2 They generally have from 5 to 40 carbon atoms per molecule, although trace amounts of shorter or longer molecules may be present in the mixture.

 

The alkanes from pentane (C5H12) to octane (C8H18) are refined into gasoline (petrol), the ones from nonane (C9H20) to hexadecane (C16H34) into diesel fuel and kerosene (primary component of many types of jet fuel), and the ones from hexadecane upwards into fuel oil and lubricating oil. At the heavier end of the range, paraffin wax is an alkane with approximately 25 carbon atoms, while asphalt has 35 and up, although these are usually cracked by modern refineries into more valuable products. The shortest molecules, those with four or fewer carbon atoms, are in a gaseous state at room temperature. They are the petroleum gases. Depending on demand and the cost of recovery, these gases are either flared off, sold as liquified petroleum gas under pressure, or used to power the refinery's own burners. During the winter, Butane (C4H10), is blended into the gasoline pool at high rates, because butane's high vapor pressure assists with cold starts. Liquified under pressure slightly above atmospheric, it is best known for powering cigarette lighters, but it is also a main fuel source for many developing countries. Propane can be liquified under modest pressure, and is consumed for just about every application relying on petroleum for energy, from cooking to heating to transportation.

 

The cycloalkanes, also known as naphthenes, are saturated hydrocarbons which have one or more carbon rings to which hydrogen atoms are attached according to the formula CnH2n. Cycloalkanes have similar properties to alkanes but have higher boiling points.

 

The aromatic hydrocarbons are unsaturated hydrocarbons which have one or more planar six-carbon rings called benzene rings, to which hydrogen atoms are attached with the formula CnHn. They tend to burn with a sooty flame, and many have a sweet aroma. Some are carcinogenic.

 

These different molecules are separated by fractional distillation at an oil refinery to produce gasoline, jet fuel, kerosene, and other hydrocarbons. For example 2,2,4-trimethylpentane (isooctane), widely used in gasoline, has a chemical formula of C8H18 and it reacts with oxygen exothermically:[11]

 

2\mathrm{C}_8 \mathrm{H}_{18(l)} + 25\mathrm{O}_{2(g)} \rightarrow \; 16\mathrm{CO}_{2(g)} + 18\mathrm{H}_2 \mathrm{O}_{(l)} + 10.86 \ \mathrm{MJ}

 

The amount of various molecules in an oil sample can be determined in laboratory. The molecules are typically extracted in a solvent, then separated in a gas chromatograph, and finally determined with a suitable detector, such as a flame ionization detector or a mass spectrometer[12].

 

Incomplete combustion of petroleum or gasoline results in production of toxic byproducts. Too little oxygen results in carbon monoxide. Due to the high temperatures and high pressures involved, exhaust gases from gasoline combustion in car engines usually include nitrogen oxides which are responsible for creation of photochemical smog.

 

 

 


Question 10

Briefly discuss the formation of petroleum. In other words, how did petroleum form? Include the environment in which initial deposition took place as well as the chemical changes that took place to produce petroleum

(4)

 

 

Answer 10

Geologists view crude oil and natural gas as the product of compression and heating of ancient organic materials (i.e. kerogen) over geological time. Formation of petroleum occurs from hydrocarbon pyrolysis, in a variety of mostly endothermic reactions at high temperature and/or pressure.[13] Today's oil formed from the preserved remains of prehistoric zooplankton and algae, which had settled to a sea or lake bottom in large quantities under anoxic conditions (the remains of prehistoric terrestrial plants, on the other hand, tended to form coal). Over geological time the organic matter mixed with mud, and was buried under heavy layers of sediment resulting in high levels of heat and pressure (known as diagenesis). This caused the organic matter to chemically change, first into a waxy material known as kerogen which is found in various oil shales around the world, and then with more heat into liquid and gaseous hydrocarbons in a process known as catagenesis.

 

Geologists often refer to the temperature range in which oil forms as an "oil window"—below the minimum temperature oil remains trapped in the form of kerogen, and above the maximum temperature the oil is converted to natural gas through the process of thermal cracking. Although this temperature range is found at different depths below the surface throughout the world, a typical depth for the oil window is 4–6 km. Sometimes, oil which is formed at extreme depths may migrate and become trapped at much shallower depths than where it was formed. The Athabasca Oil Sands is one example of this.

 


Question 11

What three conditions need to be present for the formation of a crude oil reservoir? Also make a drawing of a crude oil reservoir and indicate the geological formations and the layering present in the reserve itself.

(6)

Answer 11

Three conditions must be present for oil reservoirs to form: a source rock rich in hydrocarbon material buried deep enough for subterranean heat to cook it into oil; a porous and permeable reservoir rock for it to accumulate in; and a cap rock (seal) or other mechanism that prevents it from escaping to the surface. Within these reservoirs, fluids will typically organize themselves like a three-layer cake with a layer of water below the oil layer and a layer of gas above it, although the different layers vary in size between reservoirs. Because most hydrocarbons are lighter than rock or water, they often migrate upward through adjacent rock layers until either reaching the surface or becoming trapped within porous rocks (known as reservoirs) by impermeable rocks above. However, the process is influenced by underground water flows, causing oil to migrate hundreds of kilometres horizontally or even short distances downward before becoming trapped in a reservoir. When hydrocarbons are concentrated in a trap, an oil field forms, from which the liquid can be extracted by drilling and pumping.

The reactions that produce oil and natural gas are often modeled as first order breakdown reactions, where hydrocarbons are broken down to oil and natural gas by a set of parallel reactions, and oil eventually breaks down to natural gas by another set of reactions. The latter set is regularly used in petrochemical plants and oil refineries.

 

Question 12

By what method is petroleum separated into various petrochemicals with different boiling points?

(2)

 

Answer 12

Fractional distillation in a distillation column.

 

Question 13

Name four fuels derivatives and three other derivatives of petroleum. I.e. name the fuel and other petrochemicals that are made from petroleum.

(7)

 

Answer 13

Fuels

 

The most common distillations of petroleum are fuels. Fuels include:

 

    * Ethane and other short-chain alkanes

    * Diesel fuel (petrodiesel)

    * Fuel oils

    * Gasoline (Petrol)

    * Jet fuel

    * Kerosene

    * Liquefied petroleum gas (LPG)

    * Natural gas

 

Other derivatives

 

Certain types of resultant hydrocarbons may be mixed with other non-hydrocarbons, to create other end products:

 

    * Alkenes (olefins) which can be manufactured into plastics or other compounds

    * Lubricants (produces light machine oils, motor oils, and greases, adding viscosity stabilizers as required).

    * Wax, used in the packaging of frozen foods, among others.

    * Sulfur or Sulfuric acid. These are a useful industrial materials. Sulfuric acid is usually prepared as the acid precursor oleum, a byproduct of sulfur removal from fuels.

    * Bulk tar.

    * Asphalt

    * Petroleum coke, used in speciality carbon products or as solid fuel.

    * Paraffin wax

    * Aromatic petrochemicals to be used as precursors in other chemical production.

 

 

 

Question 14

What are the terms used for petroleum with high and low sulfur content. Note there are two terms needed in this answer. Clearly show which is which in your answer.

(2)

 

Answer 14

Sweet for low sulfur. Sour for high sulfur content.

 


Question 15

Briefly discuss three environmental impacts caused by the use of petroleum.

(3)

 

Answer 15

The presence of oil has significant social and environmental impacts, from accidents and routine activities such as seismic exploration, drilling, and generation of polluting wastes not produced by other alternative energies.

 

Extraction

 

Oil extraction is costly and sometimes environmentally damaging, although Dr. John Hunt of the Woods Hole Oceanographic Institution pointed out in a 1981 paper that over 70% of the reserves in the world are associated with visible macroseepages, and many oil fields are found due to natural seeps. Offshore exploration and extraction of oil disturbs the surrounding marine environment.[48] Extraction may involve dredging, which stirs up the seabed, killing the sea plants that marine creatures need to survive. But at the same time, offshore oil platforms also form micro-habitats for marine creatures.

Oil spills

Crude oil and refined fuel spills from tanker ship accidents have damaged natural ecosystems in Alaska, the Galapagos Islands, France and many other places.

 

The quantity of oil spilled during accidents has ranged from a few hundred tons to several hundred thousand tons (e.g., Atlantic Empress, Amoco Cadiz). Smaller spills have already proven to have a great impact on ecosystems, such as the Exxon Valdez oil spill

 

Oil spills at sea are generally much more damaging than those on land, since they can spread for hundreds of nautical miles in a thin oil slick which can cover beaches with a thin coating of oil. This can kill sea birds, mammals, shellfish and other organisms it coats. Oil spills on land are more readily containable if a makeshift earth dam can be rapidly bulldozed around the spill site before most of the oil escapes, and land animals can avoid the oil more easily.

 

Control of oil spills is difficult, requires ad hoc methods, and often a large amount of manpower (picture). The dropping of bombs and incendiary devices from aircraft on the Torrey Canyon wreck produced poor results;[49] modern techniques would include pumping the oil from the wreck, like in the Prestige oil spill or the Erika oil spill.

Whales

 

James S. Robbins has argued that the advent of petroleum-refined kerosene saved some species of great whales from extinction by providing an inexpensive substitute for whale oil, thus eliminating the economic imperative for open-boat whaling.

 

Global warming

Global warming is another threat stemming from the use of Petroleum as indeed from any fossil fuel.

 


Natural Gas

 

Question 16

What is natural gas? Include its composition in your answer.

(4)

 

Answer 16

Natural gas is a gas consisting primarily of methane. It is found associated with fossil fuels, in coal beds, as methane clathrates, and is created by methanogenic organisms in marshes, bogs, and landfills. It is an important fuel source, a major feedstock for fertilizers, and a potent greenhouse gas.

 


 

 

Question 17

What is biogas and how it is produced?

(3)

 

Answer 17

When methane-rich gases are produced by the anaerobic decay of non-fossil organic matter (biomass), these are referred to as biogas (or natural biogas). Sources of biogas include swamps, marshes, and landfills (see landfill gas), as well as sewage sludge and manure[4] by way of anaerobic digesters, in addition to enteric fermentation particularly in cattle.

 

Methanogenic archaea are responsible for all biological sources of methane, some in symbiotic relationships with other life forms, including termites, ruminants, and cultivated crops. Methane released directly into the atmosphere would be considered a pollutant, however, methane in the atmosphere is oxidised, producing carbon dioxide and water. Methane in the atmosphere has a half life of seven years, meaning that every seven years, half of the methane present is converted to carbon dioxide and water.

U.S. Natural Gas Production 1900 - 2005 Source: EIA

 

Future sources of methane, the principal component of natural gas, include landfill gas, biogas and methane hydrate. Biogas, and especially landfill gas, are already used in some areas, but their use could be greatly expanded. Landfill gas is a type of biogas, but biogas usually refers to gas produced from organic material that has not been mixed with other waste.

 

Landfill gas is created from the decomposition of waste in landfills. If the gas is not removed, the pressure may get so high that it works its way to the surface, causing damage to the landfill structure, unpleasant odor, vegetation die-off and an explosion hazard. The gas can be vented to the atmosphere, flared or burned to produce electricity or heat. Experimental systems were being proposed for use in parts Hertfordshire, UK and Lyon in France.

 

Once water vapor is removed, about half of landfill gas is methane. Almost all of the rest is carbon dioxide, but there are also small amounts of nitrogen, oxygen and hydrogen. There are usually trace amounts of hydrogen sulfide and siloxanes, but their concentration varies widely. Landfill gas cannot be distributed through natural gas pipelines unless it is cleaned up to the same quality. It is usually more economical to combust the gas on site or within a short distance of the landfill using a dedicated pipeline. Water vapor is often removed, even if the gas is combusted on site. If low temperatures condense water out of the gas, siloxanes can be lowered as well because they tend to condense out with the water vapour. Other non-methane components may also be removed in order to meet emission standards, to prevent fouling of the equipment or for environmental considerations. Co-firing landfill gas with natural gas improves combustion, which lowers emissions.

 

Biogas is usually produced using agricultural waste materials, such as otherwise unusable parts of plants and manure. Biogas can also be produced by separating organic materials from waste that otherwise goes to landfills. This is more efficient than just capturing the landfill gas it produces. Using materials that would otherwise generate no income, or even cost money to get rid of, improves the profitability and energy balance of biogas production.

 

Anaerobic lagoons produce biogas from manure, while biogas reactors can be used for manure or plant parts. Like landfill gas, biogas is mostly methane and carbon dioxide, with small amounts of nitrogen, oxygen and hydrogen. However, with the exception of pesticides, there are usually lower levels of contaminants.

 

Question 18

Name three uses of natural gas.

(3)

 

Answer 18

Power generation

 

Natural gas is a major source of electricity generation through the use of gas turbines and steam turbines. Particularly high efficiencies can be achieved through combining gas turbines with a steam turbine in combined cycle mode. Natural gas burns cleaner than other fossil fuels, such as oil and coal, and produces less carbon dioxide per unit energy released. For an equivalent amount of heat, burning natural gas produces about 30% less carbon dioxide than burning petroleum and about 45% less than burning coal.[10] Combined cycle power generation using natural gas is thus the cleanest source of power available using fossil fuels, and this technology is widely used wherever gas can be obtained at a reasonable cost. Fuel cell technology may eventually provide cleaner options for converting natural gas into electricity, but as yet it is not price-competitive. (Please note: some algal fuel producers are considering feeding the carbon dioxide resulting from natural gas burning to algae to promote growth.)

 

Residential domestic use

 

Natural gas is supplied to homes, where it is used for such purposes as cooking in natural gas-powered ranges and/or ovens, natural gas-heated clothes dryers, heating/cooling and central heating. Home or other building heating may include boilers, furnaces, and water heaters. CNG is used in rural homes without connections to piped-in public utility services, or with portable grills. However, due to CNG being less economical than LPG, LPG (Propane) is the dominant source of rural gas.

 

Natural gas vehicles

 

Compressed natural gas (methane) is a cleaner alternative to other automobile fuels such as gasoline (petrol) and diesel. As of 2005, the countries with the largest number of natural gas vehicles were Argentina, Brazil, India, Pakistan, Italy, Iran, and the United States.[11] The energy efficiency is generally equal to that of gasoline engines, but lower compared with modern diesel engines. Gasoline/petrol vehicles converted to run on natural gas suffer because of the low compression ratio of their engines, resulting in a cropping of delivered power while running on natural gas (10%-15%). CNG-specific engines, however, use a higher compression ratio due to this fuel's higher octane number of 120-130.[12]

 

Fertilizer

 

Natural gas is a major feedstock for the production of ammonia, via the Haber process, for use in fertilizer production.

 

Aviation

 

Russian aircraft manufacturer Tupolev is currently running a development program to produce LNG- and hydrogen-powered aircraft.[13] The program has been running since the mid-1970s, and seeks to develop LNG and hydrogen variants of the Tu-204 and Tu-334 passenger aircraft, and also the Tu-330 cargo aircraft. It claims that at current market prices, an LNG-powered aircraft would cost 5,000 roubles (~ $218/ £112) less to operate per ton, roughly equivalent to 60%, with considerable reductions to carbon monoxide, hydrocarbon and nitrogen oxide emissions.

 

The advantages of liquid methane as a jet engine fuel are that it has more specific energy than the standard kerosene mixes and that its low temperature can help cool the air which the engine compresses for greater volumetric efficiency, in effect replacing an intercooler. Alternatively, it can be used to lower the temperature of the exhaust.

 

Hydrogen

 

Natural gas can be used to produce hydrogen, with one common method being the hydrogen reformer. Hydrogen has various applications: it is a primary feedstock for the chemical industry, a hydrogenating agent, an important commodity for oil refineries, and a fuel source in hydrogen vehicles.

 

Other

 

Natural gas is also used in the manufacture of fabrics, glass, steel, plastics, paint, and other products.

 

 

Total (77)

 

 

 

 

 

 

 

 

 

No comments: